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1 Introduction

In this paper, we consider the inverse Cauchy problem for Poisson equation where the solution
on one part of the boundary has to be determined from overdetermined data (Cauchy data) on
another part is well-known to be severely ill-posed (Hadamard, 1953; Alessandrini et al., 2009;
Belgacem, 2007).

This inverse problem has been intensively investigated by several researchers over the last
half century, the reader can consult for example the following books (Choulli, 2009; Kabanikhin,
2012; Lavrent’ev, 2013; Isakov, 2017)

One of the first methods introduced as an approximation of the Cauchy problem is the
quasi-reversibility method Latté & Lions (1969). Since then it has been widely applied in dif-
ferent fields and several variants have been developed, one can mention for example Bourgois
(2006); Klibanov & Santosa (1991). Other methods, based on formulations in the form of an
optimal control problems where a functional taking into account one of the conditions on the
overdetermined part, have been developed Andrieux et al. (2006); Chakib & Nachaoui (2006);
Kabanikhin & Karchevsky (2012). One of the most popular techniques is that of Tikhonov
regularization (Berntsson et al., 2017; Cimetière et al., 2001; Chang et al., 2001; Kabanikhin
& Karchevsky , 2012; Kabanikhin et al., 2013; Liu & Wei, 2013). Among the many numerical
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methods, the schemes based on iteration have also been developed previously by Kozlov et al.
(1991), Jourhmane & Nachaoui (1996, 1999, 2002). The relaxation JN method introduced in
the last papers drastically reduced the number of iterations required to achieve convergence.
It was used in elasticity (Ellabib & Nachaoui, 2008; Marin & Johansson, 2010), and recently
for Cauchy problem governed by Stocks equation (Chakib et al., 2018) and for the Helmholtz
equation (Berdawood et al., 2020, 2021; Berdawood-Nachaoui et al., 2021). This relaxation
JN method has been applied the to simulate the two-dimensional non linear elliptic problem
(Essaouini et al., 2004; Essaouini & Nachaoui., 2004) and recently (Aboud et al., 2021) com-
bined the domain decomposition method and the relaxation method to solve a Cauchy problems
on inhomogenious material. In Nachaoui et al. (2021), efficient iterative domain decomposition
like-methods was developed.

In contrast to the methods mentioned above, direct and/or mesh-free methods have been
developed over the last two decades. Their particularity is that they can be implemented
without resorting to iteration. Their efficiencies are independent of the shape of the mesh.
Among these methods, the analytical methods that are highly effective but can only be used
for particular forms of the domains in which problems are defined (Liu, 2011; Grigor’ev, 2018;
Nachaoui & Nachaoui, 2021). Other mesh-free methods can be used in arbitrary fields, for
example the collocation techniques together with the expansions by different basis-functions
(Hu et al., 2005; Kuo et al., 2013; Li et al., 2008; Nachaoui et al., 2018; Shen, 2002; Tian et al.,
2008) Other methods have been developed for solving Cauchy’s problems. The reader can con-
sult for example (Bergam et al., 2019; Berntsson et al., 2017; Ellabib et al., 2021; Isakov, 2017;
Juraev, 2019, 2020; Nachaoui, 2003, 2004) and the references therein.

The aim of this paper is to explore a method based on polynomial expansion for the ap-
proximation of the Cauchy problem for the multidimensional Poisson equation in an arbitrary
bounded domain enclosed by a smooth boundary. We compare some methods for the resolution
of the ill-conditioned linear systems resulting from this approximation.

The rest of the paper is organized as follows. In Section 2, we recall Cauchy problem. The
approximation method is given in Section 3. We present the techniques for dealing with ill-
conditioning of linear systems in section 4. Finally, we present some numerical experiments to
demonstrate the efficiency of the method in Section 5.

2 Inverse Cauchy problems

Let us consider Ω ⊂ R2 with its boundary ∂Ω = Γ1 ∪ Γ2 where

Γ1 = {(r, θ) : r = ρ(θ), 0 ≤ θ ≤ βπ}

and

Γ2 = {(r, θ) : r = ρ(θ), βπ ≤ θ < 2π}, β < 1.

The inverse Cauchy problem for the Poisson equation that will be considered is as follows: Given
the Cauchy data u(x, y) and ∂nu(x, y), on the accessible part Γ1 find the unknown function
u(x, y) such that

−∆u(x, y) = F (x, y) (x, y) ∈ Ω, (1)

u(ρ, θ) = h(θ) 0 ≤ θ ≤ βπ, (2)

∂nu(ρ, θ) = g(θ) 0 ≤ θ ≤ βπ, (3)

where F, h(θ) and g(θ) are given functions.

Note that the part, Γ1 is overdetermined (two boudary conditions are specified) while Γ2

is undetermined (no boudary condition is specified). The inverse problem can therefore be
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redefined as follows: request an unknown boundary function f(θ) on the inaccessible part Γ2

under Eqs. 1), (2) and (3).
In the next section we will approach the solution of the Cauchy problem using The collocation

technique with the polynomial expansion method. It is a simple and inexpensive method in
computation but which is rarely used as a major means to solve the PDEs due to its very ill-
conditioned behavior. It makes the interpolation by higher-order polynomials not being easy to
be numerically implemented. Indeed, the interpolation by polynomials of higher order is difficult
to very ill-conditioned linear systems for which that iterative methods struggle to converge
towards suitable solutions. We will see how to get around this inconvenience.

Let’s start by noting that the normal derivative of u can be expressed in the following form
(Liu & Kuo, 2016):

∂nu(ρ, θ) = η(θ)

[
∂u(ρ, θ)

∂ρ
− ρ′

ρ2
∂u(ρ, θ)

∂θ

]
, (4)

where

η(θ) =
ρ(θ)√

ρ2(θ) + [ρ′(θ)]2
. (5)

On the other hand, we can also express ∂nu(x, y) in terms of ∂xu and ∂yu by

∂nu = η(θ)

[
cos(θ)− ρ′

ρ2
sin(θ)

]
∂xu + η(θ)

[
sin(θ)− ρ′

ρ2
cos(θ)

]
∂yu. (6)

3 Polynomial expansion

The solution u(x, y) is expanded by

u(x, y) =

m∑
i=1

i∑
j=1

cijx
i−jyj−1, (7)

where the n = m(m−1)
2 coefficients cij are to be determined. Note that the maximal order of the

above polynomial is m− 1.
Note that From Eq.(7) it is very easy to obtain

∂xu(x, y) =
m∑
i=1

i∑
j=1

cij(i− j)xi−j−1yj−1, (8)

∂yu(x, y) =
m∑
i=1

i∑
j=1

cij(j − 1)xi−jyj−2, (9)

∆u(x, y) =
m∑
i=1

i∑
j=1

cij
[
(i− j)(i− j − 1)xi−j−2yj−1 + (j − 1)(j − 2)xi−jyj−3

]
. (10)

Firstly, the coefficients cij in Eq.(7) can be expressed as an n−dimensional vector c with the
components ck, k = 1, . . . , n where the coefficients cij are reordered crossing i from 1 to m and
j from 1 to i. Then for the generic point in the boundary the term u(x, y) can be expressed as
an inner product of a vector a with c, that is,

u(x, y) = [1 x y x2 xy y2 x3 x2y xy2 y3 · · · ]


c1
c2
c3
...
cn

 = aT c. (11)
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Including Eqs.(8) and (9) into (6) gives us an expression of ∂nu.

For (x, y) ∈ Γ1 the term ∂nu(x, y) can be expressed as an inner product of a vector e with
c, where the components ek is defined by

ek = η(θ)

[
(i− j)xi−j−1yj−1

(
cos(θ)− ρ′

ρ2
sin(θ)

)
+ (j − 1)xi−jyj−2

(
sin(θ)− ρ′

ρ2
cos(θ)

)]
.

(12)
with the coefficients i, j are the same as those used to calculate ck from ci,j . Similarly, for a
generic point in the domain the term ∆u(x, y) can be expressed from (10) as an inner product
of a vector d with c, where the component dk, k = 1, . . . , n are in the form

dk = (i− j)(i− j − 1)xi−j−2yj−1 + (j − 1)(j − 2)xi−jyj−3. (13)

Let’s begin by choosing n1 points (xi, yi), i = 1, . . . , n1 on the boundary Γ1 to satisfy the
boundary condition(2)-(3), and n2 points (xl, yl), l = 1, . . . , n2 on the domain Ω to satisfy the
the equation (1). Then, introduce these equations into Eqs. (1)-(3), we obtain a system of linear
algebraic equations to solve the n coefficients cij . Now, it is suitable to express the resulting
linear algebraic equations in terms of matrix-vector product of the form

Ac=b, (14)

where b is the vector of of order nc = 2n1 + n2 and A is a the nc × n matrix given respectively
by

b =



h(θ1)
...

h(θn1)

g(θ1)
...

g(θn1)

F (x1, y1)
...

F (xn2 , yn2)



, A =



aT1
...

aTn1

eT1
...

eTn1

dT
1
...

dT
n2



, (15)

and n≪ nc.

Then, the inverse Cauchy problem is reduced to solving the over-determined linear system
(14) with respect to the chosen collocation points.

4 Solving the lineear system

4.1 The regularization of Tikhonov

Solving the linear system (14) is equivalent to solving the following least square minimization
problem:

min
C∈Rn

||AC − b|| (16)

Tikhonov’s regularization makes it possible to determine an approximation of the solution C by
replacing the minimization problem (16) by a least squared problem with a penalty form :

min
C∈Rn

{||AC − b||2 + ||LαC||2} (17)
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Lα is a matrix called regularization matrix and in general, it is taken equal to αI with I is
the identity matrix and α > 0 is a regularization parameter to be specified.

The problem is now written as follows:

min
C∈Rn

{||AC − b||2 + α2||C||2} (18)

Like any problem of minimization without constraints, the minimum is reached for a zero
gradient of the criterion of minimsation. Consequently, the minimum sought Cµ satisfies:

< ∇Jµ(Cµ), ϕ = 0∀ϕ ∈ Rn (19)

with Jµ(x) = ||Ax− b||+ µ||C||2, µ = α2

Indeed :

Jµ(x) = ||Ax− b||+ µ||C||2 (20)

= < Ax− b, Ax− b > +µ < x, x > (21)

As a result:

< ∇Jµ(Cµ), ϕ > = 2 < ACµ − b, Aϕ > +2µ < Cµ, Aϕ > ∀ϕ ∈ Rn

= 2 < AT {ACµ − b}, ϕ > +2µ < ATCµ, ϕ > (22)

By applying equation (19), any calculation done gives a linear system to solve of the form:[
ATA+ µI

]
Cµ = AT b (23)

Note that if µ = 0 this system is equivalent to solving the following normal equation:

Dc = b1, (24)

where b1 = AT b andD = ATA > 0. D is a symmetric positive definite matrix, thus the conjugate
grdiant (CG) method can be used to solve this last linear system.

To solve 23 or (24) with CG one must take care during the calculations. An example is
never to calculate the matrix D = ATA because this leads to unnecessary inaccuracies. The
procedure of solving the normal equations has many variations, but experience has shown the
method denoted CGLS (Algorithm 1) to be the best choice in strong competition with the close
cousin LSQR based on Lanczos bidiagonalization Paige & Saunders (2002).

Algorithm 1: Least Square Conjugate Gradients (CGLS). Solve ATAx = AT b, A ∈
Rn,m, n > m

1: r(0) = b−Ax(0)
2: d(0) = AT r(0)
3: i← 0
4: while r(i) ̸= 0 do

5: β(i) =
(AT r(i))

TAT r(i)
(Ad(i))

TAd(i)

6: x(i+1) = x(i) + β(i)d(i)
7: r(i+1) = r(i) − β(i)Ad(i)

8: γ(i+1) =
(AT r(i+1))

TAT r(i+1)

(AT r(i))
TAT r(i)

9: d(i+1) = AT r(i+1) + γ(i+1)d(i)
10: i← i+ 1,
11: end while
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4.2 Preconditioned and two-side squential operations

It is well known that the rate of convergence of iterative methods for solving (23) is strongly
influenced by the spectral properties of A. Preconditioning amounts to transforming the original
system into one having the same solution but more favorable spectral properties, such as a clus-
tering of the eigenvalues around 1. A preconditioner is a matrix that can be used to accomplish
such a transformation. If M is a nonsingular matrix which approximates A−1(M secA−1), the
transformed linear system

MAx = Mb (25)

will have the same solution as system (23) but the convergence rate of iterative methods applied
to (25) may be much higher. Problem (25) is preconditioned from the left, but right precon-
ditioning is also possible. Preconditioning on the right leads to the transformed linear system

AMy = b. (26)

Once the solution y of (26) has been obtained, the solution of (23) is given by x = My. The
choice between left or right preconditioning often depends on the choice of the iterative method,
and on properties of the coefficient matrix (the side of the preconditioner can be important for
nonsymmetric problems).

Now, we want to reduce the condition number κ(A) by scaling of A. The importance of
scaling of linear algebraic equations is needed to equilibrate our system and it has a long history
of development. If the norm of all rows or columns in a matrix are equals, then that matrix
is called equilibrated. The problem is to find a suitable diagonal matrix Q or P such that the
condition number of AP, QA, or QAP is reduced considerable possible. Liu & Wei (2013) has
proposed a simple procedure to find P and Q; summarized as follows:

Let us start with the right- and left- conditioner diagonal matrices P and Q, respectively as:

P =


p1 0 · · · 0 0
0 p2 · · · 0 0
...

...
. . .

...
...

0 0 · · · pn−1 0
0 0 · · · 0 pn

 (27)

and

Q =


q1 0 · · · 0 0
0 q2 · · · 0 0
...

...
. . .

...
...

0 0 · · · qn−1 0
0 0 · · · 0 qn

 (28)

where pk and qk defined by the following formula:

pk = γ


n∑

i=1
A2

i1

n∑
i=1

A2
ik


(1/2)

, k = 1, . . . , n, (29)

qk = δ


n∑

j=1
A2

1j

n∑
j=1

A2
kj


(1/2)

, k = 1, . . . , n. (30)

Where γ and δ are amplification factors used to more reduce the condition number. When
γ = 1 = δ, the resultant matrices QA and AP have the same norm of each row and column
respectively.
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Let us define two two operators in Eqs.(27) and (28), respectively, by:

P = Pγ(A), Q = Qδ(A)

and we construct a sequence of Pk and Qk, k = 1, . . . ,M by

P1 = Pγ(A), A1 = AP1 (31)

Qk = Qδ(A2k−1), k = 1, . . . ,M Pk = Pγ(A2k−2), k = 2, . . . ,M (32)

where
A2k−1 = A2k−2Pk, k = 2, . . . ,M and A2k = QkA2k−1, k = 1, . . . , n. (33)

Consider the right-preconditioner P and left-preconditioner Q given by

P = P1P2P3 · · ·Pn and Q = QnQn−1Qn−2 · · ·Q1. (34)

Now, Eq.(23) will be solved in section 5 with

1. Right-preconditioner By = b1 where c = Py and B = AP,

2. Left-preconditioner Bc = b0 where b0 = Qb1 and B = QA,

3. Two-sides preconditioner By = b0 where c = Py, b0 = Qb1 and B = QAP.

4.3 Stopping criterion

The simplest and most common stopping criteria are based on the absolute and relative residual:

∥ri∥ < Tol (35)

∥ri∥/∥b∥ < Tol (36)

where Tol is a user-provided error tolerance. Since onen usually prefers relative stopping criterion
in practice, we will focus on (36). Note that criterion 3 can be obtained from 4 by an appropriate
scaling on 4. Other effcient stopping criterion can be found in Ashby et al. (2006).

4.4 Initial guess

Both the CGM and the CGLS described in Section 4.1 require an initial guess to be specified
for u, on the underspecified boundary Γ2. This initial guess is improved at every iteration
and approaches the exact solution. Therefore, the rate of convergence and the accuracy of these
methods clearly depend on how close the initial guess is to the exact solution. In all the examples
presented here, we have taken a zero vector as the initial iteration.

5 Numerical results and discussion

It is the purpose of this section to present and compare the numerical results for the Cauchy
problem considered in this study which have been obtained using the methods described in
Section 4.2.

To illustrate the ability of the present inverse algorithms in estimating the unknown boundary
boudary condition on Γ2 from the knowledge of the specified conditions on Γ2, we consider in
following some analysis models where an exact solution is used to calculate the function F, its
traceH and its normal derivative g on Gamma1. By using these exact given data and zero initial
data, one is asked to reconstruct the exact boundary using the CGM like-méthods descrived in
section 4.2. Under this consideration the left term in Stopping criterion (36) may decrease to a
very small number since there exists an exact solution. Thus one may take a very small Tol.
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Example 1. In this example we suppose that the closed-form solution is u(x, y) = x2− y2− r2,
the domain is bounded by ρ(θ) = 1 and Γ1 is defined taking β = 0.5. The number of boundary
collocation used for discretising the boundary is taken to be n1 = 11 and the number of internal
collocation points n2 = 88. The inverse analysis is then performed by varying m from 1 to 10.
For both algorithms CGM and CGLS, we take Tol = 10−10.

Table 1

m Error by using CGM Iteration
2 3.43767386515131 3
3 6.43902176532603e-12 7
4 6.16624977783573e-11 17
5 1.02578575221883e-08 39
6 5.72754328572817e-09 94
7 0.00214552046363989 134
8 0.00459485878112826 195
9 0.00738105992314577 434
10 0.00853877435842424 789

(a) CGM method

m Error by using CGLS Iteration
2 3.43767386515131 3
3 5.58249858283589e-13 7
4 1.18318715677388e-12 17
5 4.09398738778544e-10 37
6 1.15626872999672e-11 84
7 0.00214551490191763 113
8 0.00459488563614370 153
9 0.00738168803743888 300
10 0.00854067598588999 544

(b) CGLS Method

The results are presented in the (1a) and (1b). we observe that from m = 3 we obtain a
very good approximation, which conforms to the data since the axacte solution is a polynomial
function of degree 2. We also note that the best approximation is obtained for m = 3, that is to
say a polynomial of degree 2. Which shows that the approximation is exact when the solution is
a plolynomial. We also observe that the CGLS method is more accurate than the CGM and that
even with equal accuracy CGLS is faster.

Table 2

m Error by using CGM Iteration
2 3.08098845306835 3
3 2.06501482580279e-14 9
4 7.73714425861272e-13 21
5 3.02635694282571e-11 44
6 8.89843532192458e-10 104
7 2.56322399971864e-08 258
8 8.51758197195629e-06 843
9 0.00189369340274298 1445
10 0.00450677718451753 3865

(a) CGM method

m Error by using CGLS Iteration
2 0.452826479542826 3
3 7.77156117237610e-16 9
4 8.99280649946377e-15 18
5 2.60569343879524e-13 41
6 3.95239396766556e-13 82
7 1.30903621275991e-10 176
8 7.00823010735263e-11 428
9 0.00188057609507458 787
10 0.00446554140209410 1300

(b) CGLS Method

We take the same data and we take a smaller tolerance, Tol = 10−15. The results in ta-
bles(2a) and (2b) confirm the first remarks. With this smaller tolerance accuracy is improved
for all approximation order m. We obtain almost an exact approximation with always a better
approximation for CGLS with a smaller number of iteration.

Example 2. In this example we take a polynomial solution with a higher degree u(x, y) =
6x2y2 − x4 − y4. The domain is bounded by ρ(θ) = 0.5 and Γ1 is defined taking β = 0.5. The
number of boundary collocation used for discretising the boundary is taken to be n1 = 11 and the
number of internal collocation points n2 = 88. The inverse analysis is then performed by varying
m from 1 to 10. For both algorithms CGM and CGLS, we take Tol = 10−10.

We also notice from tables(3a) and (3b) that, the accuracy is always good but deteriorates
when m increases. This is explained by the fact that, since the degree is high, a higher m is
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needed to have a better approximation and therefore a larger number of collocation points is
necessary, but we kept the same points as in the first case.

Table 3

m Error by using CGM Iteration
2 0.452826479542826 3
3 3.55687071904056 7
4 3.73406976901455 17
5 2.54404769231325e-10 40
6 1.48116175324710e-08 94
7 3.76989889757884e-06 309
8 0.0331786183717281 414
9 0.0645458932329768 659
10 0.0140685031061766 1622

(a) CGM method

m Error by using CGLS Iteration
2 0.452826479542826 3
3 3.55687071903923 7
4 3.73406976899618 17
5 3.42080141649189e-10 37
6 7.29394158641365e-11 85
7 9.50189633141289e-08 204
8 0.0331790188448867 311
9 0.0645466728425814 448
10 0.0140703156276937 1089

(b) CGLS Method

We increase the number of collocation points, we take n1 = 60 and n2 = 720, we then observe
an improvement in the results: the error is multiplied by 10−1 everywhere with always the same
advantage for the CGLS method (see from tables(4a) and (4b)).

Table 4

m Error by using CGM Iteration
2 0.802436693874813 3
3 9.7596071887227 7
4 10.2269890251551 17
5 3.98794661270787e-9 42
6 1.56532750250490e-08 94
7 1.16663086470551e-06 311
8 0.0931954381763555 417
9 0.0114750589626180 1015
10 0.0258746121939944 1546

(a) CGM method

m Error by using CGLS Iteration
2 0.802436693874812 3
3 9.75969071886996 7
4 10.22698902249560 17
5 2.11913586435851e-10 38
6 4.6731159384812e-11 85
7 8.17991998152097e-8 206
8 0.0931957783481953 276
9 0.0114987827121759 589
10 0.0258937249121710 816

(b) CGLS Method

The results of the tables (5a) and (5b) are obtained with the same data as the for tables
(3a) and (3b), only the tolerance is smaller Tol = 10−15. We observe a clear improvement in
the results, this time the error is multiplied by 10−2. We therefore obtain better results without
increasing the number of collocation points.

Table 5

m Error by using CGM Iteration
2 0.452826479542826 3
3 3.55687071904009 11
4 3.73406976907850 25
5 1.98182892995909e-10 50
6 1.28474817444136e-08 135
7 1.28065266389299e-06 440
8 3.08965163546447e-05 1840
9 0.00142812522068457 9385
10 0.0721122655173159 14500

(a) CGM method

m Error by using CGLS Iteration
2 0.452826479542826 3
3 3.55687071904010 12
4 3.73406976908181 21
5 2.41388734534916e-14 50
6 3.28126843826970e-12 104
7 8.32238364465459e-11 252
8 9.13505304008724e-09 729
9 2.893499240629375e-08 2438
10 0.00667144887609868 2655

(b) CGLS Method
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5.1 The effect of noise

In real-world inverse problems, the known boundary data are measured and, therefore, contami-
nated by inherent measurement errors. For all examples investigated in this paper, the simulated
noisy data are generated using the following formula:

h(θ) = uex(ρ(θ), θ) + wσ

where σ is the standard deviation of measurement errors which is assumed to be the same for all
measurements, and w is the Gaussian distributed random error. σ determines the noise level, it
takes values of 0.001, 0.010.05 and 0.1.

We now discuss the influence of the measurement errors on the inverse solutions in predicting
f(θ) on Γ2 using the the data of example 1 for various amounts of noise are presented in figures

Figure 1: Results for the analysis model Left: σ = 0.1, right; σ = 0.05

Figure 2: Results for the analysis model Left: σ = 0.01, right; σ = 0.001

Figures 1 and 2 present the numerical solution the boundary Γ2, retrieved using CGM and
CGLS algorithms in comparison with the exact solution. It can be seen from these figures that,
as σ decreases, the numerical solution approximates better the exact solution while remaining
stable. The numerical results obtained by both algorithms are équivalent. They are still a
reasonably good approximation to the exact solution of the problem, even when the boundary
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data being polluted with a 10%(σ = 0.1) relative random noise, since we have solved an ill-
conditioned problem (Condition number about 1.39× 102).

However, when we solve a very ill-posed problem as in example 4 and 5 (Condition number
about 3.44×107 and 7.7×109 respectively) with noise in the data, the recovery of the approximate
solution on the underspecified boundary Γ2 then becomes not so good. The results remain
unsatisfactory even when the two methods are used with regularization and preconditioning.

5.2 The effect of regularization en preconditioning

Example 3. To see the impact of regularization as well as the contribution of preconditioning,
we applied the different methods presented in section 4.2.

Here, we suppose that the closed–form solution is u(x, y) = exp(x) ∗ cos(y). The domain is
bounded by ρ(θ) = 1

2 , and Γ1 defined taking β = 0.5. The number of points n1 = 50 and n2 = 500.
the best results are obtained for m = 9. The tolerance is taken Tol = 10−15.

In what follows NP denotes the number of matrix product in the equation (34), γ is the
parameter of the preconditioning in equations (29-29)), α is the parameter of regularization and
Iter denotes the number of iterations necessary for convergence.

We first present the results obtained by CGM Then the same system is solved using the

Table 6: CGM Method

Precondition γ NP Error α Iter
Without preconditioning
and without regularization

0.008988 3869

Regularization without pre-
conditioning

0.008872 α = 10−12 3788

Regularization with
preconditioning

Right 0.005888 α = 10−12 2766
Left 0.007731 α = 10−13 2170
Two-sides 0.006863 α = 10−14 1872

Regularization with
preconditioning

Right 0.2 0.004002 α = 10−15 2144
Left 0.6 0.007825 α = 10−12 1694
Two-sides 0.5 0.007145 α = 10−14 1835

Regularization with
preconditioning

Right 0.9 2 0.008357 α = 10−14 2088
Left 0.2 1 0.006437 α = 10−16 1295
Two-sides 0.5 1 0.003953 α = 10−13 1818

(CGLS).

In Table 6 and 7 we present the accuracy errors and the number of iteration obtained using
the regularization methods described in section 4.2. We notice that after 3869 iteration CGM
converges with a precision of the order of 10−2. The regularization does not bring any improve-
ment in accuracy and we only gain 2% of time (81 iterations).

On the other hand the various types of preconditioning reduce the error as well as the number
of iterations necessary to reach convergence. The best result is obtained for a regullarization
with a two-sided multiple preconditioner for which the error is divided by 10 and the number of
iterations is divided by 2.

The accuracy obtained with the CGLS method is comparable to that obtained with CGM,
however, it is much faster. The number of iterations is reduced by 70% without regularization or
preconditioning. Again, the best result is obtained by the regularized and preconditioned method
with a multiple two-sided preconditioner.

Example 4. In this example, we suppose that the closed–form solution is u(x, y) = exp(x) ∗
cos(y). The domain is bounded by ρ(θ) = exp(sin(θ)) sin2(2θ) + exp(cos(2θ)) cos2(2θ), and Γ1
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Table 7: CGLS Method

Precondition γ NP Error α Iter
Without preconditioning
and without regularization

0.0090856 1162

Regularization without pre-
conditioning

0.0090860 α = 10(−12) 1068

Regularization with
preconditioning

Right 0.0090395 α = 10(−14) 793
Left 0.00767280 α = 10(−15) 811
Two-sides 0.00696777 α = 10(−12) 693

Regularization with
preconditioning

Right 0.4 0.00908275 α = 10(14) 790
Left 0.2 0.00780252 α = 10(−13) 805
Two-sides 0.2 0.00738994 α = 10(−16) 680

Regularization with
preconditioning

Right 0.4 1 0.00879906 α = 10(−14) 790
Left 0.6 1 0.00658269 α = 10−8 769
Two-sides 0.2 2 0.00128111 α = 10−19 661

defined taking β = 0.5. The number of points n1 = 50 and n2 = 1000. the best results are obtained
for m = 9. The tolerance is taken Tol = 10−15.

We first present the results obtained by CGM

Table 8: CGM Method

Precondition γ NP Error α Iter
Without preconditioning
and without regularization

0.261835 1243

Regularization without pre-
conditioning

0.132279 α = 10−5 1197

Regularization with
preconditioning

Right 0.096146 α = 10−8 756
Left 0.074738 α = 10−3 1455
Two-sides 0.036945 α = 10−3 910

Regularization with
preconditioning

Right 0.1 0.096146 α = 10−10 744
Left 0.4 0.064063 α = 10−3 1116
Two-sides 0.2 0.033322 α = 10−6 882

Regularization with
preconditioning

Right 0.1 1 0.096146 α = 10−10 744
Left 0.4 2 0.09692 α = 10−6 1017
Two-sides 0.3 1 0.038629 α = 10−13 869

Then the same system is solved using the CGLS method.
Note that the linear system obtained for this example est very ill-conditioned (Condition

number about 3.44 × 107). From Table 8 we see that after 1243 iteration CGM converges with
a error of 26%. The regularization divide the error by 2 but stay above 13% with 46 iteration.
Again, the preconditioning postivement act on accuracy and time of execution.

The results presented in Table 9 confirm the performances of the CGLS method already
observed for the previous example.

Example 5. In this last example, we consider data calculated from the following solution
u(x, y) = cos(5(x2+y2)) The domain is bounded by ρ(θ) = 0.5 and Γ1 defined taking β = 1. The
number of points n1 = 64 and n2 = 2048. the best results are obtained for m = 14. The tolerance
is taken Tol = 10−15.

It should be noted that the example considered in here is a very severe example for iterative
methods since the exact solution is very far from the most natural guess available, the matrix is
a large matrix which is very ill-conditioned (Condition number about 7.72× 109).
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Table 9: CGLS Method

Precondition γ NP Error α Iter
Without preconditioning
and without regularization

0.261831 977

Regularization without pre-
conditioning

0.132260 α = 10−5 877

Regularization with
preconditioning

Right 0.096146 α = 10−8 563
Left 0.074731 α = 10−3 864
Two-sides 0.023686 α = 10−4 664

Regularization with
preconditioning

Right 0.1 0.096145 α = 10−10 554
Left 0.9 0.099474 α = 10−4 855
Two-sides 0.4 0.053762 α = 10−4 537

Regularization with
preconditioning

Right 0.1 1 0.096145 α = 10−8 554
Left 0.5 3 0.091908 α = 10−6 791
Two-sides 0.1 2 0.035928 α = 10−18 526

Table 10: CGM Method

Precondition γ NP Error α Iter
Without preconditioning
and without regularization

- -

Regularization without pre-
conditioning

- - -

Regularization with
preconditioning

Right 0.004362 α = 10−11 17753
Left 0.008014 α = 10−18 37737
Two-sides 0.005971 α = 10−12 10477

Regularization with
preconditioning

Right 0.9 0.006194 α = 10−11 15795
Left 0.5 0.009419 α = 10−13 34757
Two-sides 0.3 0.006867 α = 10−13 9686

Regularization with
preconditioning

Right 0.7 1 0.009247 α = 10−10 15493
Left 0.2 2 0.053826 α = 10−11 23013
Two-sides 0.1 1 0.012130 α = 10−18 7087

Table 11: CGLS Method

Precondition γ NP Error α Iter
Without Precondition and
without regularization

- -

Regularization without pre-
conditioning

- - -

Regularization with
preconditioning

Right 0.004671886 α = 10−11 11332
Left 0.007536478 α = 10−14 50717
Two-sides 0.006039663 α = 10−13 7676

Regularization with
preconditioning

Right 0.2 0.009809684 α = 10−12 10927
Left 0.2 0.018132786 α = 10−18 44702
Two-sides 0.3 0.006861981 α = 10−12 6935

Regularization with
preconditioning

Right 0.1 2 0.003153701 α = 10−12 9601
Left 0.1 1 0.049899417 α = 10−11 41066
Two-sides 0.7 1 0.012127153 α = 10−14 5694

We first present the results obtained by CGM.
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We observe from table Table 10 that the CGM does not produce any solution for this prob-
lem even for the regularized system. This confirms the ill-conditioning character of the systems
resulting from the polynomial expantion in particular when the degree of the approximation poly-
nomial is quite high. We also observe that CGM produces a fairly good solution with decent
precision when applying preconditioning. This shows the interest of preconditioning the systems
isus of the approximation of the ill-posed problems.

We then used CGLS to solve this extremely ill-conditioned linear system. The results pre-
sented in Table 11 confirm the performances of the CGLS method already observed for the pre-
vious example.

6 Conclusion

We solve the inverse Cauchy problem of Poisson equations in an arbitrary domaine for recovering
unknown data on a part of the boundary from the over-specified Cauchy boundary conditions
given on an other inaccessible part. We have transformed the inverse Cauchy problem to solve a
direct problem, using polynomial expansion. A regularization combined with a preconditioning
strategy is used to reduce the number of conditions of the linear system in order to determine
the coefficients of expansion. Several numerical examples are presented to show that the method
can overcome the very ill-posed property of the inverse Cauchy problem. We have found that
the Cauchy problem for the Poisson equation can be regularized by one of the two methods
considered as all of them produced a stable numerical solution.

However, the numerical solutions obtained by these methods differ in terms of number of
iteration. It has been found that the CGLS method outperforms the CGM. We note that for
the severe test example considered, none of the two methods succeeds to converge without a
regularization and a strategy of preconditioning.
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